HIGHER ORDER INTEGRATION METHODS FOR STRUCTURAL DYNAMICS PROBLEMS
نویسندگان
چکیده
منابع مشابه
Implicit-explicit higher-order time integration schemes for computations of structural dynamics with fluid-structure interaction
In this paper higher order implicit Runge-Kutta schemes are applied to fluid-structure interaction (FSI) simulations. A staggered approach with a structural predictor is applied to an FSI problem. The equations governing the dynamics of the structure are integrated in time by the Explicit Single Diagonal Implicit Runge-Kutta (ESDIRK) schemes and the arbitrary high order finite volume scheme is ...
متن کاملHigher-Order Difference and Higher-Order Splitting Methods for 2D Parabolic Problems with Mixed Derivatives
In this article we discuss a combination between fourth-order finite difference methods and fourth-order splitting methods for 2D parabolic problems with mixed derivatives. The finite difference methods are based on higher-order spatial discretization methods, whereas the timediscretization methods are higher-order discretizations using CrankNicolson or BDF methods. The splitting methods are hi...
متن کاملAdaptive higher-order finite element methods for transient PDE problems based on embedded higher-order implicit Runge-Kutta methods
We present a new class of adaptivity algorithms for time-dependent partial differential equations (PDE) that combines adaptive higher-order finite elements (hp-FEM) in space with arbitrary (embedded, higher-order, implicit) Runge-Kutta methods in time. Weak formulation is only created for the stationary residual of the equation, and the Runge-Kutta method is supplied via its Butcher’s table. Ar...
متن کاملHigher Order Variational Problems
Higher order variational problems appear often in the engineering literature and in connection with the so-called gradient theories of phase transitions within elasto-plastic regimes. The study of equilibria of micromagnetic materials asks for mastery of second order energies (see [51], [91]; see also [31], [38], [44], [45], [61], [77], [78], [79], [108]), and the Blake-Zisserman model for imag...
متن کاملOn large-scale unconstrained optimization problems and higher order methods
Third order methods will in most cases use fewer iterations than a second order method to reach the same accuracy. However, the number of arithmetic operations per iteration is higher for third order methods than a second order method. Newton’s method is the most commonly used second order method and Halley’s method is the most well-known third order method. Newton’s method is more used in prac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statyba
سال: 1996
ISSN: 1392-1525
DOI: 10.1080/13921525.1996.10531649